CITY OF ELKHART, INDIANA INDUSTRIAL WASTE QUESTIONNAIRE

SEC	TION A. GENERAL INFORMATION (Type or Print, Please)
1.	Company Name NIBCO INC.
2.	Mailing Address P. O. Box 1167 ELKHART, IN 46515
3.	Address of Premises 500 SIMPSON AVE.
4.	Name and Title of Signing Official <u>Jack Kunkel</u> , plant manager
5.	Wastewater discharges to:
	City sewer system X
	Private septic system
6.	If your facility discharges to the City sewer system, check the types of discharges:
	X Sanitary X Wash water X Rinse water
	X Cooling water X Process water Scrubber water
	Other
	Note: If your facility discharges only to a private septic system and not to the City sewer system, or if only sanitary sewage is discharged to the City sewer system, it is only necessary to fill out Section A of this questionnaire. Otherwise, complete entire questionnaire.
7.	Contact Official
	Name WALT DINTAMAN
	Title MAINTENANCE ENGINEER
	Address NIBCO INC. 500 SIMPSON AVE ELKHART, IN 46516
	Phone Number 295-3000 or 295-3271
	The information contained in this questionnaire is familiar to me and to the best of my knowledge and belief, such information is true, complete, and accurate.
	Date Signature of Official
	Date Signature of Official

SECTION B. PRODUCT OR SERVICE INFORMATION

	CO, Elkhart Division, is primarily a manufacturer of
cop	per fittings used in copper piping systems for plumb
heat	ing and air conditioning.
Principa	l Raw Materials Used:
copp	er tube and copper tube blanks
Catalvst	s, Intermediates:
none	
110110	
• • • • • • • • • • • • • • • • • • •	1 Product or Service (use Standard Industrial Classification f appropriate): 3463
• • • • • • • • • • • • • • • • • • •	
Manual i Appende Classifi subject each of	f appropriate): 3463 d to this questionnaire is a list of Standard Industrial cation (SIC) codes for industries currently or potentially to USEPA preteatment regulations. List SIC codes for your processes that are subject to USEPA pretreatment.
Appende Classifi subject each of regulati	f appropriate): 3463 d to this questionnaire is a list of Standard Industrial cation (SIC) codes for industries currently or potentially to USEPA preteatment regulations. List SIC codes for your processes that are subject to USEPA pretreatment.
Appende Classifi subject each of regulati	d to this questionnaire is a list of Standard Industrial cation (SIC) codes for industries currently or potentially to USEPA preteatment regulations. List SIC codes for your processes that are subject to USEPA pretreatment.ons.

SE								
1.	• •					Continuo		
	For bat	inuous ch disc	during	first (list types	day) shi , average	ift number of	batches	/24 hrs.
	and vol	ume (ga	illons) pe	er batch.				
1.								
2.	Is ther	e a sch	neduled sh	hutdown? _	no			
	When? _							
3.	Is prod	luction	seasonal?	?	no		_	
	If yes,	explai	n indicat	ting month	s(s) of p	eak produc	ction.	
		•	•	J	•	•		
							· · · · · · · · · · · · · · · · · · ·	
4.	Average	number	of emplo	oyees per	shift: 2	<u> 12</u> lst; _	<u>44</u> 2nd;	_7_ 3rd
	•		_					
	•		_			212 lst;	12 mid	nigh j rd
5.	Shift s	start ti		:00 a.m ₁	st; 3:30) p.m. 2nd	12 mid	nigh j rd
5.	Shift s	start ti			st; 3:30) p.m. 2nd	12 mid	
5.	Shift s	start ti	mes: 7 y worked Mon	:00 a.m ₁	st; 3:30 of the we) p.m. 2nd	12 mid except	nigh j rd
5.	Shift s	start ti	mes: 7	:00 a.m ₁	st; $3:30$	p.m. 2nd	12 mid except	nigh j rd 10:30 p
5.	Shift s	start ti	mes: 7 y worked Mon	:00 a.m ₁ each day Tue	st; 3:30 of the we	p.m. 2nd	12 mid except	nigh j rd 10:30 p
5.	Shifts Shifts 1st	normall Sun	mes: 7 Ly worked Mon X	:00 a.m 1 each day Tue	st; 3:30 of the we	p.m. 2nd; eek: Thu X	12 mid except Fri	nigh j rd 10:30 p
5.	Shifts Shifts	normall Sun	y worked Mon X	:00 a.m 1 each day Tue X X	st; 3:30 of the we Wed X X	p.m. 2nd	12 mid except Fri	nigh j rd 10:30 p
5.	Shifts Shifts 1st 2nd 3rd	normall Sun	mes: 7 Mon X X	:00 a.m 1 each day Tue X X	st; 3:30 of the we wed X X	p.m. 2nd	Fri X X	nigh _{frd} 10:30 p
5.	Shifts Shifts 1st 2nd 3rd Describ	normall Sun X oe any w	mes: 7 Mon X X X wastewate:	$\begin{array}{c} :00 \text{ a.m.} \\ \text{each day} \\ \text{Tue} \\ \hline X \\ \hline X \\ \hline X \\ \hline \end{array}$	st; 3:30 of the we wed X X X t equipme	p.m. 2nd; eek: Thu X X X	Fri X X cesses in	nightad 10:30 p
5.	Shifts Shifts 1st 2nd 3rd Describ	normall Sun X oe any w	y worked Mon X X X vastewate:	each day Tue X X X treatment	st; 3:30 of the we wed X X X t equipments	p.m. 2nd; eek: Thu X X X ent or proceedings	Fri X X cesses in	Sat use:
5.	Shifts Shifts 1st 2nd 3rd Describ A Cy from	normall Sun X oe any waclone the c	y worked Mon X X X vastewate: type fi	each day Tue X X X treatment	st; 3:30 of the we wed X X X X X Is equipments to g proces	p.m. 2nd; eek: Thu X X X ent or proc	Fri X X cesses in	nightad 10:30 p

SECTION D. WATER CONSUMPTION AND LOSS

1		Pare	Watar	Sources:
4	•	MOM	water	DOULCES.

Quant	ity		
391	1 gallons	per day	
113,	197 gallons	per day	
	gallons	per day	
	gallons	per day	•
se:			
including use of	f alum, ferric	chloride,	
ter softening			·
zone) disinfec	tion		
		•	
110,857	gallons per	day	
653	gallons per	day 890)
1687		•	PER WORK
3911	gallons per	day_	DAY
0	gallons per	day	
<u></u>	gallons per	day	
ted at 10 gpd	per employee.		
on working	days only.	•	
	391 113, se: including use of the second of		3911 gallons per day 113,197 gallons per day gallons per day gallons per day gallons per day se: including use of alum, ferric chloride, ater softening 220ne) disinfection 23011 gallons per day 653 gallons per day 890 1687 gallons per day 2139 3911 gallons per day 0 gallons per day gallons per day

		•
4.	list sperace volume of di	scharge or water loss to:
•	City Wastewater Sewer	16,515 gallons per day
	Septic Tank Discharge	gallons per day
	Surface Discharge	100, 59'3 gallons perday
	Waste Hauler	0 gallons per day
	Evaporation	not calculatedlions per day
	Contained in Product	0 gallons per day
5.		Intermittent X Steady
	During first (day) List average water usag	Intermittent X Steady shift 7:00 a.m. to 3:30 p.m. for process water e for SIC Processes itemized in Section
	During first (day) List average water usag B-5 above: Regulated	shift 7:00 a.m. to 3:30 p.m. for process water
	During first (day) List average water usag B-5 above: Regulated	shift 7:00 a.m. to 3:30 p.m. for process water e for SIC Processes itemized in Section Average Water Consumption(GPD)
	During first (day) List average water usag B-5 above: Regulated SIC No. Brief Pro	shift 7:00 a.m. to 3:30 p.m. for process water e for SIC Processes itemized in Section (Average Water Consumption(GPD) eaning 3029 GPD
5.	During first (day) List average water usag B-5 above: Regulated SIC No. Brief Pro 3463 copper cl 3325 Steel Foundary	shift 7:00 a.m. to 3:30 p.m. for process water e for SIC Processes itemized in Section (Average Water Consumption(GPD) eaning 3029 GPD
	During first (day) List average water usag B-5 above: Regulated SIC No. Brief Pro 3463 copper cl 3325 Steel Foundary	shift 7:00 a.m. to 3:30 p.m. for process water e for SIC Processes itemized in Section Average Water Consumption(GPD) eaning 3029 GPD y 0 , molds, punches 0
	During first (day) List average water usag B-5 above: Regulated SIC No. Brief Pro 3463 copper cl 3325 Steel Foundary 3544 Making dies	shift 7:00 a.m. to 3:30 p.m. for process water e for SIC Processes itemized in Section Average Water Consumption(GPD) eaning 3029 GPD y 0 , molds, punches 0

SECTION E. SEWER CONNECTION AND DISCHARGE INFORMATION

Reference No.	Descriptive Location of Sewer Connection or Discharge Point	Avg. Flow (gpd)
1 on A-WD259-1	Sewer runs west from south west	13,140
·	corner of building.	
2 on A-WD259-1	Sewer runs west from a point 100'	3370
	south of north west corner of buil	ding.
		
complex showing 1 location of the SIC of monitoring manho for sewers and SIC monitoring staff reference and fie other pertinent phy	rawing or dimensioned sketch of the indocation of sewer referenced in E-1 about process described in Section D-5. Show ole, if any, and other possible sampling process-effluents. Indicate how City indican gain access to the sampling points ld orientation buildings, streets, allegated structures should be included. Drawing: A-WD259-1	ove and location points ustrial s. For ys, and

SECTION F. PRIORITY POLLUTANT INFORMATION

1. Please indicate by placing an "X" in the appropriate box by each listed chemical whether it is Suspected to be Absent, Known to be Absent, Suspected to be Present, or Known to be Present in your manufacturing or service activity or generated as a byproduct. Some compounds are known by other names. Please refer to Appendix A for those compounds which have an asterisk(*).

TEM		SUSPECTED	KNOWN	SUSPECTED PRESENT	KNOWN	ITEM		SUSPECTED	KNOWN	SIISPECTED PRISENT	KNOWN PRI:SI:NT
٧٥.	CHEMICAL COMPOUND	SUSP	X K	SUSP	PRE:	. NO.	CHEMICAL COMPOUND	SUST	1 2 5	SIIS	2 5
i.	ammonia	X				47.	chlorobenzene		X		
2.	asbestos (fibrous)	X	1	1		48.	chloroethane"		i y'		
5.	cyanide (total)		X	i	i i	49.	2-chloroethylvinyl ether	1	12		
			1	l		50.	chloroform"		TX	1	1
1.	antimony (total)			TX	1	151.	chloromethane*		TX	1	
5.	arsenic (total)		i X	1		52.	2-chloronaphthalene	1	ΙX	1	
5.	beryllium (total)		IX	1		53.	2-chlorophenol*		1χ	i	Ī
	cadmium (total)		X			54.	4-chlorophenylphenyl che:	1	IX	i	1
3.	chromium (total)				X	55.	chrysene*		X	i	
9.	copper (total)			1	以	56.	4,4'-DDD*		İΧ	į	1
10.	lead (total)		1		IX!	57.	4,4'-DDE*		ΙX		1
11.	mercury (total)		ĪΧ	Ī	i į	58.	4,4'-DDT*	1	iΧ	i	
i2.	nickel (total)	X	;		i j	59.	dibenzo(a,h)anthracene*		iΧ	1	
15.	selenium (total)	X			1	60.	dibromochloromethane"		iΧ	1	
14.	silver (total)			i	, ;	61.	1.2-dichlorobenzene"	1	iχ	1	!
15.	thallium (total)		ΪX	ì		62.	11,3-dichlorobenzene*	1	! X	İ	1
16.	zinc (total)			X	i. 1	65.	1,4-dichlorobenzene"	1	iχ	í	1
			1		1	64.	3,3'-dichloropenzidine	1		i	1
1	lacenaphthene		X	l .	<u> </u>	165.	dichlorodifluoromethane*	1	1 X	1	1
13.	lacemannthylene		X	1	1	66.	l,l-dichloroetname"		ĺχ	1	
	acrolein		X	<u> </u>	<u> </u>	67.	11,2-dichloroethane*		ix	i	
20.	acrylonitrile		TX	ì		68.		1	IX	!	1
21.	aldrin		<u>LX</u>	1	;	169.	Itrans-1, I-dichloroethene	1	<u> 18</u>	1	1
22.	anthracene		LX.	<u> </u>		70.	12.4-dichlorophenol	<u> </u>	<u> </u>	1	!
25.	benzene		LX	<u> </u>	1	1 -1.	11,2-dichloropropane		11	<u>!</u>	!
21.	benzidine		LX	<u> </u>		72.	(cis & trans)1,3-dichlo-	1	١.,	i	İ
25.	benzo(a)anthracene*		<u>LX</u>	<u> </u>		<u> </u>	TODTODENE		<u>iX</u>	<u> </u>	<u> </u>
26.	benzo(a)pyrene*		<u> </u>	<u> </u>		73.	dieldrin		<u> </u>	1	<u> </u>
	benzo(b)fluoranthene		X	<u> </u>	1	74.	diethyl phthalate	+	<u> </u>	1	<u> </u>
28.	benzo(g,h,i)perylene*		<u> </u>]	!	. 5.	12,4-dimethylphenol*			<u>i </u>	-
29.	benzo(k)fluoranthene*		÷Ş	<u> </u>	<u> </u>	76.	dimethyl phthalate	<u> </u>		<u>'</u>	!
30.	a-BHC (alpha)	ļ	+3	<u> </u>	<u> </u>	77.	di-n-butyl onthalate	<u> </u>	<u> </u>	<u> </u>	!
	1 b-BHC (beta)			!	!	· 8.	di-n-octyl phthalate*	<u>.</u>		i	-
32.	d-BHC (delta)		 	! 	!	1 79.	4,6dinitro2-methylphenol	-	11	1	
	g-BHC° (gamma)	ļ ·	12	! -	 	11 80.	2,4-dinitrophenol		+3	!	!
	bis(2-chloroethylether			! 	1	1 81. 11 82.	2,4-dinitrotoluene 2,5-dinitrotoluene			!	1
35.	bis2-chloroethoxymethams			:	! 		11,2-diphenvlhydrazine*	<u> </u>	: 	 -	: -
36.	bis(chloromethyliether*		+ >	:	!	33.		·	+4	:	-
37.	bis2-ethylnexylpotnalate	<u>'</u>	++	$\dot{+}$	+	135.		 -	- ^		
39.	bromodichioromethane*		i Q	÷		1 36.			: \ 	'	+
10.	bromoform*	 		i –		1 87.			$+ \diamond$:	i
	bromomethane =		十分	<u> </u>	i	188.			÷Ş		-!
12.		<u>'</u>	文		i	189.	lethvihenzene	 -			
	butvlbenzyl phthalate	 	+2	i —	+	190.		<u> </u>	+ 🎗		
	carpon tetrachioride"	<u>'</u>	i	1	1		fluorene"		+0	-	
	chlordane		$+ \Rightarrow$	i -	i	92.			十 交		
	H-chloro-3-methylphenol		10		T	1 93.			$\frac{1}{2}$		
i	l distribution	<u> </u>	IX	1	<u> </u>	1	,		<u> </u>	1	

SECTION F. PRIORITY POLLUTANT INFORMATION (CON'T)

ITEM NO.	CHEMICAL COMPOUND	SUSPICTED ABSENT KNOWN ABSENT	SUSPECTED	KNOWN PRESENT	ITEM NO.	CHEMICAL COMPOUND	SUSPECTED ABSENT	KNOMN ADSI:NT	SUSPECTED PRESENT	KNOWN
91.	hexachlorobenzene*	IX			112.	PCB-1248*		X	1	
95.	hexachlorobutadiene	IX	7		113.	PCB-1254*	1	1 /		
96.	hexachlorocyclopenta-	IX			114.	PCB-1260*	1			
	diene*	LX			115.	pentachlorophenol	i			
97.	hexachloroethane"	LΙΧ			116.	phenanthrene	1	T X		
98.	indeno(1,2,3-cd)pyrene*	IX			117.	phenol	1 X	1		
99.	lisophorone"	LX		1	1118.	pyrene	1	IX		
100.	I methylene chloride*	IX	1		119.	2,3,7,8-tetrachlorodi-	1	ĪΧ		
101.	: naphthalene	I = I X				benzo-p-dioxin*	1	ļ		
102.	i nitrobenzene	$\perp \perp \chi$			120.	11122-tetrachloroethane*	1	1X		
103.	:2-nitrophenol*	IX	1		121.	tetrachloroethene*		IX		
104.	4-nitrouhenol*	IX	1		122.	toluene*	1	IX		
105.	n-nitrosodimethylamine*	IX			123.	toxaphene	!	$\perp X_{\perp}$		
106.	n-nitrosodipropylamine	$\perp \perp \chi$	1		124.	1,2,4-trichlorobenzene	1	I X		
107.	in-nitrosodiphenylamine*	LX	i .	1	125.	L.L-trichloroethane"	1	IX		
108.	I PCB-1016*	TX			1126.	L1,2-trichloroethane*		X		
109.	PCB-1221*	IX		i	127.	trichloroethene*	1	<u> </u>	<u> </u>	LX_
110.	i PC3-1232*	LX			128.	trichlorofluoromethane		X		
, 111.	1 PCB-1242*	LIX			129.	2,4,6-trichlorophenol		IX		
	1		1		150.	vinyl chloride*	1	Χ	1	1

2. For chemical compounds in F-2 above which are indicated to be "Known Present," please list and provide the following data for each: (attach additional sheets if needed).

ITEM NO.	CHEMICAL COMPOUND	ANNUAL USAGE (LBS)	ESTIMATED LOSS TO SEWER LBS:/YR.	ITEM NO.	CHEMICAL COMPOUND	ANNUAL HISACIE (L.BS)	ESTINATED 10SS TO SEWER 1.BS./YR.
	•			:		1	
8	CHROMIUM	170	NONE	i			
a	COPPER 8,160	0,000	441	:)	: :	
	1	r		1:		1	1
10	LEAD	19,098	59	 		;	<u>!</u>
16	ZINC (SEENOTE)	NONE	104	1			
							·
127	TRICHLOROETHYLENE	80,470	82	1		!	
<u> </u>		 	 	 		1	
		<u> </u>		1	1	!	
				1		(
	ļ ·	<u> </u>		' 			
<u> </u>		 	 	1	<u> </u>	 	1
-			<u> </u>	il		1	
			<u> </u>	11			
		 	 	!!			
<u> </u>		 	 	-	1	<u> </u>	
 		 	†	 			1

NOTE: ZINC IS SOMETIMES PRESENT AS A MINOR IMPURITY IN COPPER

. 3.	List any other chemicals known or anticipated to be present in the discharge.	
	Soap, Alkaline Cleaner, Bismuth,	
	Roto-brite L-552 (a proprietary product containings citric	acid),
	Sodium Persulfate, Acetic Acid, Phosphoric Acid,	
	Nitric Acid	
4.	Describe, what if any, laboratory analyses have been conducted on process waste streams in the plant, including which streams were sampled, what parameters were measured, and frequency and type of samples. (The baseline report referred to in G2 below can be referenced in answering this question.)	•
	see attached sheet PAGE -13-	
	·	
SEC	Is this plant subject to an existing Pretreatment Standard? 3463 copper forming (40 CFR 468)	
2.	Is this plant required to submit a baseline report per 40 CFR 403.12? Yes If a baseline report has been prepared, attach a copy to this questionnaire. Copy attached. NO If a baseline report is required, but has not yet been prepared, indicate date that it will be submitted. Feb. 10, 1984	
3.	If subject to Federal Pretreatment Standards, are the standards being met on a consistent basis? (The baseline report can be referred to in answering this question.)	
	We do not meet the copper forming standards at the	
	present time. (40 CFR 468)	
	· · · · · · · · · · · · · · · · · · ·	

requir and/o by whi	dditional pretreatment facilities and/or operation and maintenance red to meet Pretreatment Standards? If additional pretreatment or operation and maintenance are required, list the schedule och they will be provided. (The baseline report can be referred answering this question.)
Nov. 24, 19 <u>83</u>	Compare costs of DMP system vs Advance Chemical Systems
	vs NIBCO designed system
Dec. 22, 1983	Finalize decision on which system to adopt
Jan. 15, 1 <u>984</u>	Finalize design
Jan. 30, 1 <u>984</u>	Write purchase order to vendor or if NIBCO design,
	order long lead time items
Feb. 10, 19 <u>84</u>	File baseline report for copper forming category
April 30, 1 <u>984</u>	File permit application '
June 1, 198 <u>4</u> S	ystem installed
or re	ystem debugged and operational ribe residuals (sludges, precipitates, etc.) that are produced sult at your facility and the methods employed to dispose e residuals. List names of waste haulers, if applicable.
a) waste oil from degreasing operation EPA
	waste N ^O F001 D008
	Reclaimed
	McKesson Envirosystems KYD053348108
	Chem-Resource Recovery IND088737275
	Chemsoly INC IND980590947
Ъ) Waste Chromic Acid

Nelson Industrial Services

